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UNSTEADY VISCOUS VORTEX WITH FLOW TOWARD THE CENTER* 

by Robert G. Deissler 

Lewis Research Center 

SUMMARY 

An analysis was made of a strong unsteady vortex that consists of an annular region, 
in which the flow is tangential and radial, and a core region, in which a uniform axial flow 
is also present. The effects of end-wall boundary layers, if present and important, were 
assumed to be eliminated by use of suitably rotating end walls. The Navier-Stokes equa- 
tion for the tangential flow was solved numerically to carry out the analysis. 

flow are introduced for various initial tangential velocity profiles. The response of the 
tangential flow is then calculated as a function of radius and of time. 

Step changes in the tangential velocity at a given radius and step changes in the radial 

INTRO DU CTlON 

Many of the vortices occurring in nature have intensities that vary with time. The 
formation and the decay of atmospheric vortices such as tornadoes, hurricanes, and dust 
devils, as well as of bathtub vortices, are examples of transient vortex motions. In ad- 
dition, the random vortices in turbulent flow (if they can be identified as vortices) are 
unsteady. 

Not a great deal of work has been done on unsteady vortex flows, and most of that 
done has been for no radial flow (refs. 1 to 3). Since the phenomena previously mentioned 
involve a concentration of vorticity by an inward radial flow, the analyses for no radial 
flow would not be expected to aid greatly in understanding those phenomena. 

One example of unsteady flow in which radial inflow is considered, where the flow 
rotates in a sinusoidal manner, is given by Donaldson (ref. 4). Hamel (ref. 5) has given 
a general infinite ser ies  solution for an unsteady two-dimensional vortex with radial flow 
but no axial flow. Donaldson (ref. 4) has applied one form of that solution to  a suddenly 
rotated porous cylinder in which the tangential flow is nearly wheel like. Some similar 
solutions for a transient vortex with radial but no axial flow have also been obtained 

* A portion of this work was presented at the International Union of Theoretical and 
Applied Mechanics Symposium on Concentrated Vortex Motions in Fluids, held at  the 
University of Michigan, Ann Arbor,  July 6 to 11, 1964. 
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Figure 1. - Vortex model used i n  analysis. 

(refs. 4 and 5). An investigation of vortex 
motion in an emptying container in which vis- 
cosity is neglected in the equations of motion is 
given in reference 6. 

A simplified model is analyzed here in 
order to give some understanding of the for- 
mation and the destruction of viscous vortices 
with radial and axial flow. The response of the 
tangential flow in a vortex to sudden changes in 
the tangential velocity at a particular radius 
and to changes in the radial velocity is consid- 

ered. In general, the simplest examples of these changes and combinations of these 
changes a r e  analyzed numerically to give some insight into transient vortex motions. 
analytical model and the method of solution are described in the ANALYSIS section. 

bulence might be obtained by replacing the laminar radial-flow Reynolds number in the 
analysis by a turbulent-flow Reynolds number as given in reference 7. 

The 

The analysis is carried out for laminar flow. A rough estimate of the effect of tur- 

ANALY S I S  

The model used for analyzing the unsteady vortex is essentially the same as that used 
in reference 8 and generalized in reference 7 for the steady-state vortex. A sketch of 
the axially symmetric vortex is given in figure 1. The tangential velocity v is a function 
only of radius and time. (All symbols are defined in the appendix. ) The tangential and 
radial velocities are specified at a given reference radius. In addition, the axial velocity 
is specified as a function of radius. A s  shown in reference 7, only a linear variation of 
axial velocity with axial position is consistent with the assumption of a tangential velocity 
independent of axial position. 

For the present calculations, a radially uniform axial velocity is assumed for the 
region near the center 0 < r < ri, and a zero axial velocity is assumed in most cases for 
the remaining annular region ri < r < ro. This type of motion might be simulated by 
using a rotating porous container with an exit hole at the center of one end. In addition, 
one example is considered in which the radial velocity at the outer radius is zero (solid 
wall), and the radial inflow is produced by allowing the fluid to enter the vortex uniformly 
at one end or by a receding free surface (eq. (9)). Step changes with time in the tangential 
velocity at a particular radius and in the radial velocity are allowed. The flow is assumed 
to be incompressible and governed by the Navier-Stokes equation for the rate of change of 
tangential velocity. The analysis then predicts the tangential velocity as a function of 
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radius and of time. 
Two points in connection with the model just described require some comment. In 

particular, the assumption that v is independent of axial position is not good near a 
stationary end wall in a vortex chamber. Recent work given in reference 9 has empha- 
sized the importance of the end-wall boundary layer. The end-wall effects should be less 
for long vortices than for short ones, and these effects might also be reduced by extending 
the exit tube into the vortex chamber. For the present investigation, the end wall may be 
assumed to consist of concentric sections which rotate in such a way that the boundary- 
layer effects a re  eliminated. 

velocity w with r can be specified arbitrarily. Actually, that velocity is determined by 
the axial momentum equation and the boundary conditions, as in the analyses of refer-  
ences 10 and 11. Those exact solutions give considerable insight into the vortex problem, 
although they are restricted either to a radially uniform axial pressure gradient (ref. 10) 
or to vortices in which v and w a r e  of the same order of magnitude (ref. 11). Refer- 
ence 12 shows that the model used here (where the variation of w with r is specified, 
and v is independent of z) is consistent with the axial momentum equation, at least for 
steady-state vortices with strong circulation. The same conclusion is easily shown to 
apply to the strong transient vortices considered herein. The real axial velocity profile 
will be a function of the axial pressure gradient, which varies with radius in the exit 
hole. 
it seems reasonable to assume the axial velocity to  be radially uniform. 

symmetry is 

The other point that requires discussion is the assumption that the variation of axial 

Inasmuch as the variation of axial pressure gradient with radius is hard to specify, 

The incompressible Navier -Stokes equation for  the tangential velocity with axial 

and the continuity equation is 

For the model considered herein, equation (1) in dimensionless form becomes 



where v' = v/vi, uT = u/ui, rf = r/ri, Re = u.r./u, 1 1  and t' = -( u i /r i) t. The subscript i 
refers to values at the inner radius, and since v varies with time, vi is taken to be the 
value of v at ri for the fully developed or steady-state vortex that is considered in 
reference 13. Note that uiri = uOrO in the definition of the radial-flow Reynolds number, 
when there is no axial flow in the annular portion of the vortex. Since the radial flows 
considered are toward the center, Re will be negative. 

Equation (3) shows that since v is independent of z, u will also be independent of 
z. The continuity equation then gives 

for the annular region (no axial flow) and 

for the core (uniform axial flow). 
Solutions of equations (3) to (5) for various initial and boundary conditions would 

probably be possible as infinite series of product solutions. Such solutions were ob- 
tained in reference 4 for the special case of a suddenly rotated porous cylinder in which 
there was radial flow but no axial flow, and the tangential flow was nearly wheel like. A 
numerical approach with finite differences seemed simpler, however, and with that ap- 
proach nothing was lost as far as understanding the physics of the flow. Equation (3) in 
finite difference form becomes 

Av' %+Ar - %-Ar +--- UkVk 1 - = u' 
At' T 2 A r '  r' Re 

- 2v' + V;+Ar 1 %+Ar - %-Ar (6) r %-Ar - -  +- 
. I  

r' 21 ( A r f ) 2  rf 2 A r t  

where the subscripts r, r + A r ,  and r - A r  refer to values at particular radii, and Av' 
is the increment in v' which corresponds to the dimensionless time increment At'. By 
starting from a given initial distribution for v' as a function of rt,  equation (6) can be 
used to calculate vT at various dimensionless times and radii. In the calculations, the 
ratio of At' to (ArT)2 must be kept sufficiently small to ensure stability of the solution. 
The quantity A r f  must also be made small enough that cutting it in half does not change 
the results appreciably. The calculations were done on a high speed digital computing 
machine. The results for the various examples a re  given in the section RESULTS AND 
DISCUSSION. 
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RESULTS AND DISCUSSION 

The transient vortex motions considered include the following examples: (1) the 
decay of a fully developed vortex when the tangential velocity at a particular radius is 
suddenly reduced to  zero, (2) the response of an initial flow without vorticity to vorticity 
suddenly introduced at an outer radius, (3) the concentration of an initially uniform field 
of vorticity by a suddenly applied radial inflow, and (4) the decay of a fully developed vor- 
tex when the radial flow is suddenly reduced to zero. In addition, a combination of two 
types of step changes is studied by subjecting an initial wheel flow simultaneously to a 
radial inflow and a zero tangential velocity at the outer radius. 

Response of In i t ia l l y  Fu l l y  Developed Vortex to a Suddenly Applied Zero 

Tangential Velocity at  a Par t icu lar  Radius 

The initial fully developed vortex is calculated from the steady-state solutions of 
reference 13: 

for 1 < r' < rb, and - -  

Re? 2/2 ' - 1  1 - e  v - -  
Re/2 r' 1 - e  

for 0 < r' < 1. At time t' = 0, the tangential velocity - -  

(8) 

at a given radius is set equal to 
zero, so that there is a step change of velocity in time and space at that point. The vari- 
ation of v' with t' and r' is then calculated from equations (4) to  (6). 

Figure 2 (p. 6) shows how the effect of a zero tangential velocity at rb quickly prop- 
agates out into the vortex like a growing boundary layer and soon begins to  reduce the 
tangential velocities at all radii. After an initial adjustment period, the shape of the 
vortex remains similar as it decays until it is finally destroyed. This similarity for 
large values of time is possible because of the linearity of the governing differential equa- 
tion. Because of its linearity, equation (3) has the product solution 
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Dimensionless radius, r' = r / r i  

(a) Radial-flow Reynolds number, -6; ratio (b) Radial-flow Reynolds number, -6; ratio 
of outer to inner  radius, 2. of outer to inner  radius, 10. 
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(d) Radial-flow Reynolds number, -3; ratio 

Figure 2. - Response of vortex to suddenly applied zero tangential velocity at outer edge. 

(c )  Radial-flow Reynolds number, -6; ratio (e) Radial-flow Reynolds number, -3; ratio 
of outer to inner  radius, M. of outer to inner  radius, 2. of outer to inner  radius, 10. 

The effects of radius ratio ro/ri and of radial-flow Reynolds number Re a r e  illu- 
strated by the curves in figure 2. The curves for the smaller radius ratios decay much 
more rapidly than those for the larger radius ratios for the same value of ui/ri. 
instance, the curves for ro/ri = 10 and t' = 100 show about the same degree of decay as 
those for ro/ri = 2 and a t' of 3 or  4. Increasing the radius ratio by a factor of 5 in- 
creased the dimensionless decay time by a factor of at least 25. The effect of negatively 
increasing the radial-flow Reynolds number Re is also to increase the decay time, al- 
though the effect of increasing Re from -3 to -6 is not large. 

The foregoing comparison of decay t imes for various values of ro/ri was made on 
the basis that ui/ri remains constant. If uo/ro rather than ui/ri remains constant, 
the results are considerably different. A dimensionless time tb defined as -(uo/ro)t 

For 
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is related to  t' by tb = tv(uo/ui)/(ro/ri) = tT/(ro/ri) 2 (eq. (4)). The results in figure 2 

show that for the same uo/ro and Re, the decay times for the various radius ratios are 
about the same. For example, for Re = -6 and tb = -(uo/ro)t = 1, the decay is about 
95 percent complete for all three radius ratios. Thus, the unexpected result is produced 
that the decay time for a vortex of given ro and uo (or uo/ro) is about the same re -  
gardless of the initial shape, where ro/ri determines the initial shape. 

porous cylindrical wall through which the fluid enters. The fluid would exit tlvough a 
central hole in an end of the container. That case is now compared with the case in which 
the radial inflow is produced by allowing the fluid to enter the vortex uniformly at one end, 
rather than through the cylindrical wall. The same type of flow could be produced approx- 
imately in an emptying container of liquid in which the radial inflow comes from the 
changing height of a free surface. For  those examples, if u is again independent of z, 
it is found from the continuity equation that equation (4) should be replaced by 

The vortex considered in figure 2 might be simulated with a rotating container with a 

2 r'(rb - 1) 
(9) 

for the annular region. Equation (9) satisfies the continuity equation (eq. (2)) if aw/az is 

i independent of r and also satisfies the boundary conditions that u = 0 at ro and u = u 
at ri. For the core region, equation (5) is still applicable. Although aw/az is uniform 
within either the core o r  the annular region, its value is different in the two regions, 
being positive in the core and negative in the annulus. 

figure 3.  In order to obtain the effect of the change in boundary condition for u at the 
outer radius on the transient motion for the same initial conditions, equations (7) and (8) 
a r e  again used for the initial conditions. Comparison of the curves in figure 3 (p. 8) with 
those in figure 2 shows that the trends a r e  similar, but that the decay t imes are longer in 
figure 3. Longer decay times result because the radial velocity is zero at the outer edge 
of the vortex in figure 3, so that it takes longer for the effects of the zero tangential ve- 
locity at the outer edge to  be brought into the vortex than it does in figure 2, where the 
fluid can come in through a porous cylindrical wall. 

The results in figures 2 and 3 show that, when the tangential velocity at the outer edge 
of a vortex is zero, the vortex will eventually be destroyed. 
small  residual vorticity may of course remain because of the effect of Earth rotation. An 
initially strong vortex in a symmetrical nonrotating container, however, will necessarily 
decay to a large extent. The reason that such a vortex may appear to  be steady state (as 
in an emptying bathtub) is evidently that the decay times are very long. From the defini- 

The transient vortex in which u is zero at ro but not a t  other radii is illustrated in 

In a very large container a 
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0 2 4 6 8 10 0 4 8 12 16 M 

time, 
t' = -(ui/ri)t 

0 4 8 12 16 M -. 
Dimensionless radius, r '  = rlri 

(a) Ratio of outer to inner radius, 10. (b) Ratio of outer to inner radius, 20. 

Figure 3. - Response of fu l ly  developed vortex to suddenly applied zero tangential velocity at outer radius. Radial- 
velocity i s  zero at outer radius and i s  given by equation (9) in place of equation (4) i n  annular region. Radial-flow 
Reynolds number, -6. 

tions of t' and Re, t = -trr:/(Reu), or in terms 

of tb = -(uo/ro)t = tr/(ro/ri)2, as discussed 
earlier in this section, t = -tbro (Reu). For 
the vortices in figure 3 and typical values for 
ro (e. g. , ro - 6 in. ), the decay times may be 
longer than it takes to empty the vortex con- 
tainer, even if u is replaced by a turbulent 
viscosity, which is several times as large as 
the molecular kinematic viscosity (ref. 8). 

In the results obtained thus far, the tan- 
gential velocity is reduced to zero at the outer 
edge of the vortex. Determination of the re- 
sponse of a vortex to a zero tangential velocity 
at a smaller radius, say at the radius where the 
initial tangential velocity is a maximum, may be 
of interest in connection with the possible de- 
struction of atmospheric or other vortices. Re- 
sults are presented in figure 4. 
locity in the annular region is given by equa- 

Dimensionless 

2 

I 
0 1 2 3 4 5 

Dimensionless radius, r' = rlri 

Figure 4. - Response of vortex to zero tangential velocity 
at point where init ial  tangential velocity was maximum. 
Radial-flu# Reynolds number, -6. 

The radial ve- 
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(c) Radial- f iw Reynolds number, -3; ratio of outer to 
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time, 
t' = -(ui/ri)t 

(b) Radial-flow Reynolds number, -6; ratio of outer to 
inner  radius, 10. 

- 

2 4 6 a 1.0 
IS, r' = r/ri 

(d) Radial-flow Reynolds number, -3; ratio of outer to 
inner  radius, 10. 

Figure 5. - Growth of vortex produced by vorticity introduced at outer radius. 
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tion (4) rather than equation (9) in this and in all the succeeding examples. The inner 
portion of the vortex is quickly dissipated; however, only a small part of the outer portion 
of the vortex is removed, and the rest  remains; that is, the portion of a vortex outside the 
radius where a zero tangential velocity is applied is affected relatively slightly and 
quickly adjusts to  a new steady-state shape. 

Response of Initial Flow Without Vorticity to Vorticity Introduced at Outer Radius 

The next example is the inverse of that given in figure 2 (p. 6). The growth of a vor- 
tex produced by vorticity introduced at the outer radius in an initially radial and axial flow 
is calculated. Evidently, the criterion of Lewellen (ref. 12), that the ratio of tangential 
to sink velocity should be large in order for the model used here to be consistent with the 
axial momentum equation, will not be satisfied for small duration of time. Since the ratio 
of tangential to sink velocity is not a parameter in this analysis, that ratio can, however, 
be made as large as desired (except at t = 0), and the time for which the criterion is not 
satisfied can consequently be made as short as desired. 

zero except at the outer radius. The effect of the applied tangential velocity at the outer 
radius first propagates throughout the flow field. Then the vortex grows until it becomes 

Results a r e  presented in figure 5 (p. 9), where the initial tangential velocities a r e  

Dimensionless 
time, 

t' = -(u:/r:)t 

, 4 l f y  ' 

(a) Ratio of outer to inner  radius, 5. - 
c 0 .- 

Dimensionless radius, r' = r/ri 

(b) Ratio of outer to inner  radius, 10. 

Figure 6. - Formation and decay of vortex resul t ing from 
pulse of vorticity. Radial-flow Reynolds number, -6; 
dimensionless length of vorticity pulse At ' ,  5. 

fully developed. The trends with radius ratio 
and radial-flow Reynolds number Re a r e  simi- 
lar to those in figure 2. Also, the dimensionless 
time required to grow a fully developed vortex 
for a particular radius ratio and Reynolds num- 
ber turns out to be about the same as that which 
was required to  destroy it in figure 2. For in- 
stance, comparison of the curves for Re = -6 
and t1 = 80 shows that the vortex in figure 5(b) 
is about 90 percent developed at a t' of 80, 
whereas that in figure 2(b) is about 90 percent 
dissipated. This result does not seem to be in- 
tuitively obvious, since the shapes of the chang- 
ing vortices in the two examples are not the 
same. 

Finally, consider the formation and decay 
of a vortex resulting from a pulse of vorticity at 
the outer radius. The model is the same as that 
in the preceding case except that, here, the 
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vorticity introduced at t' = 0 is cut off at t1 = 5, or At' = 5. Figure 6 shows results for 
radius ratios of 5 and 10, and an Re of -6. For both ratios, the tangential velocities 
near the center continue to  rise for a considerable length of time after the cutoff time, 
that is, after a t' of 5. After cutoff, a hump forms near the outer edge. A s  time goes 
on, the outer hump dies out, and another hump near the center begins to grow, reaches a 
maximum, as shown in figure 6, and finally decays. The maximum height of the center 
hump is smaller for the larger ro/ri, the length of the vorticity pulse being the same. 
This trend seems to  occur because the vorticity pulse had farther to travel with the larger 
ro/ri, and thus had more time to decay. For the smaller ro/ri, the maximum height of 
the center hump is about twice the height of the initial pulse at the outer edge. 

Concentrat ion of In i t ia l ly  Un i fo rm Field of Vort ic i ty by Suddenly Applied Radial Inf low 

The preceding cases considered the effect of a change in tangential velocity at a given 
radius in a vortex on the tangential velocities at other radii. This section and the follow- 
ing one consider the effect of a sudden change in radial flow on the tangential velocities. 
The present example might, for instance, be related to the growth of a tornado. In order 
for a tornado to form, a widespread area of weak vorticity must initially be present, as 
in a cyclone. Then a radial inflow must occur to concentrate the vorticity. The same 
conditions apply to the formation of a vortex in an emptying container. If there is no vor- 
ticity present in the fluid, there will, of course, be no vortex formed when the drain plug 
is removed, i f  the container is symmetrical. Shear-flow turbulence also involves a con- 
centration of vorticity at various random locations in a shear field. The required radial 
inflows a r e  produced by stretching vortex filaments in the flow. 

Figure 7 (p. 12) shows the effect of a sudden radial inflow on an initially uniform 
field of vorticity. The initial uniform field of vorticity is a wheel flow (v'/vb = rl/rb). A 
uniform field of vorticity could also be obtained in a shear flow in which the velocity 
gradient is uniform. A radial inflow caused by removing fluid at some location would 
then produce a concentration of vorticity much as for an initial wheel flow, except that the 
flow would not be axially symmetric. The curves in figure 7 show how the initial wheel 
flow changes with time and finally becomes a fully developed vortex. The effects of 
ro/ri and Reynolds number on the development of the vortex a re  similar to those in the 
preceding figures; the dimensionless growth times are longer for the larger radius ratios 
and Reynolds numbers. This example is very much like that in figure 5; the difference 
is that the initial tangential profile is linear in figure 7, whereas in figure 5 the initial 
tangential velocity is zero except at r;, where there is a step increase in v. Thus, the 
dimensionless growth times in figure 7 are shorter because the boundary layer, which 
grows from the outer radius in figure 5, has in a sense already developed at t' = 0 in 

' 
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- ' (a) Radial-flow Reynolds number, -6; ratio of outer to a > 
i n n e r  radius. 2 ." 

Dimensionless 

(b) Radial - f lw Reynolds number, -6; ratio of outer to 
i n n e r  radius, 10. 

4 6 a 10 

(c) Radial - f lw Reynolds number, -3; ratio of outer to (d) Radial - f lw Reynolds number, -3; ratio of outer to 
inner  radius, 2 i n n e r  radius, 10. 

Figure 7. - Growth of vortex from initial wheel flow produced by radial inflow. 
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figure 7. The curve for t' = 20 in figure 5(b) (p. 9) corresponds approximately to  that for 
t' = 0 in figure 7(b). If, then, 20 is subtracted from the values of t' on the curves in 
figure 5(b) (for t' > 20), those curves correspond closely to the curves in figure 7(b). 

The effect of Earth rotation on the results for this case can be taken into account by 
adding 51 sin y to  the initial angular velocity of the fluid relative to the Earth, where S2 

is the angular velocity of the Earth and y is the latitude. If the initial vorticity of the 
fluid relative to the Earth is zero, the fluid will still rotate at the rate 51 sin y relative 
to stationary coordinates, and a weak vortex may be formed when a radial inflow is 
present. This effect was studied experimentally by Shapiro (ref. 14). 

Decay of Ful ly  Developed Vortex When Radial Flow i s  Suddenly Reduced to Zero 

This example is the inverse of the preceding one and is related to the decay of a tor- 
nado if the radial flow is reduced to zero or to the decay of the vortex in a rotating con- 
tainer if a plug is inserted in the exit hole. A vortex filament in turbulent flow will also 
decay when its radial inflow goes to zero. 

Results are  given in figure 8. The initial fully developed vortex decays with time 
and approaches wheel flow for large times. The decay is much faster than in figure 2 

(p. 6), because the radial inflow, which is absent in figure 8, tends to preserve the 
initial vortex shape in figure 2. 

1 . 2 1 1  n Dime;:;nless 

t' -(ui/ri)t 

0 2 4 6 8 10 0 2 4 6 8 10 
Dimensionless radius, r' = r / r i  

(a) Radial-f lw Reynolds number, -6. (b) Radial-flav Reynolds number, -3. 

Figure 8. - Decay of fu l ly  developed vortex to wheel f l w  when radial i n f l w  is  reduced to zero. Ratio of outer to inner  
radius, 10. 

13 



3- . 6r Dimensionless 
In i t ia l  Wheel Flow Simultaneously Subjected 

to Radial Inflow and Zero Tangential 

Velocity at t he  Outer Radius 

The two types of step changes considered in 
in the preceding sections are combined in this 

growth and a decay of a vortex are obtained by 

ted in figure 9 for an ro/ri of 10 and a 
Reynolds number of -6. The vortex first begins 

0 2 4 6 8 io example. The novel feature is that both a 
Dimensionless radius, r' = rlri 

Figure 9. - Init ial  wheel flow simultaneously subjected to 
radial inflow and zera tangential velocity at outer radius. 
Radial-flow Reynolds number, -6; rat io of outer to inner  
radius, 10. 

step changes introduced at One time as illustra- 

to grow because of the radial inflow, as in figure 7. This growth continues until the 
boundary layer due to  the zero tangential velocity at the outer radius penetrates the inner 
region. At that time the vortex begins to decay, as in figure 2 (p. 6), and this decay con- 
tinues until the tangential velocities are zero at all radii. This phenomenon is somewhat 
like the growth and decay of the vortex in a nonrotating container when the fluid contains 
initial vorticity, and the plug in the exit hole is removed. 

CONCLUDING REMARKS 

If the tangential velocity at the outer edge of a fully developed vortex with radial flow 
is suddenly reduced to zero, a boundary layer from the outer edge first propagates into 
the vortex. After the initial adjustment period, the shape of the vortex remains similar 
until the tangential velocities at all radii a re  zero. The growth time for a vortex pro- 
duced by vorticity suddenly introduced at the outer radius of a nonrotating flow is about 
the same as the decay time for the fully developed vortex just mentioned. 

The growth and decay times for a vortex increase with increasing radius ratio and 
radial-flow Reynolds number if ui/ri is held constant. If, however, uo/ro is held con- 
stant, the growth and decay times a r e  not greatly affected by radius ratio (or fully devel- 
oped profile shape). The decay times for a vortex in which the radial inflow is produced 
by allowing the fluid to enter the vortex uniformly at one end are longer than those ob- 
tained when the flow comes in through a porous cylindrical wall. The portion of a vortex 
outside the radius where a zero tangential velocity is applied is affected relatively slightly 
by the change and quickly approaches a new steady-state shape. If a pulse of vorticity is 
applied at the outer edge of a nonrotating radial inflow, a vortex begins to grow, continues 
to grow for some time after the vorticity is cut off, and then decays. 

The growth of a vortex from an initial wheel flow with a suddenly applied inward 
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radial velocity is similar to  that produced by vorticity introduced at the outer edge of a 
nonrotating flow, except that the growth times are somewhat shorter for  the initial wheel 
flow. This shorter growth time results because the boundary layer which grows from the 
outer edge in the initially nonrotating flow is in a sense already developed when flow is 
started from a wheel flow. The time required for a fully developed vortex to  decay to a 
wheel flow when the radial velocity is reduced to zero is shorter than that required when 
the decay is produced by a zero tangential velocity at the outer radius. The radial flow 
in the latter example tends to preserve the fully developed shape. If a wheel flow is si- 
multaneously subjected to  a radial inflow and a zero tangential velocity at the outer radius, 
the resulting vortex first grows and then decays as the boundary layer from the outer 
radius reaches the inner portions of the vortex. 

Lewis Research Center, 
National Aeronautics and Space Administration, 

Cleveland, Ohio, May 20, 1965. 
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APPENDIX - SYMBOLS 

Re 

r 

r' 

t 

t' 

t'o 
U 

U' 

V 

radial-flow Reynolds number, 
uir i/u 

radial coordinate 

r/ri 

time 

dimensionless time, -(ui/ri)t 

-bo h o ) t  
radial velocity 

U/Ui 

tangential velocity 

v' V/Vi 

vi fully developed tangential velocity 
at ri 

w axial velocity 

z axial coordinate 

u kinematic viscosity 

Subscripts: 

i inner radius (fig. 1) 

o outer radius (fig. 1) 
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